Tutorial 4: Econometrics with R (Solution)

Recap

Last week, we discovered the OLS estimator and what it does. It allows to assess, under certain conditions, the linear relation between an explained variable \(y\) and explanatory variables \(X\), using \(n\) individual observations.

Recall that OLS estimator is biased. If the estimator is biased \(E(\epsilon|X) \neq 0\). Bias may arise in three main cases:

  1. Measurement error. If the observed value \(\tilde{X}\) of the real variable \(X\) is biased, then it writes \(\tilde{X} = X + \mu\). Then the exogeneity assumption does not hold.
  2. Omitted variable bias. The true model is \(y_i = \alpha + \beta_1 x_i + \beta_2 z_i + \epsilon_i\). If we estimate \(y_i = \alpha + \beta_1 x_i + \epsilon_i\), we may under- or over-estimate the effect of \(x\) and \(y\).
  3. Reverse causality (or simultaneity). The true model is \[ \begin{align*} y_i &= \alpha_0 + \alpha_1 x_i + \alpha_2 z_i + u_i \\ x_i &= \beta_0 + \beta_1 y_i + \beta_2 z_i + v_i \end{align*} \]

Rearranging yields a reduced-form model \(y_i = \pi_0 + \pi_1 z_i + \pi_2 x_i + e_i\), but \(e_i\) contains both \(u_i\) and \(z_i\) and the exogeneity assumption might be violated.

Exercise 1: Solow model and OVB

Dataset MRW_QJE1992.xlsx can be downloaded on Moodle.

Baseline Solow model

Before, we load the necessary libraries and create an object path to store the path for further use.

path = "C:/users/mateomoglia/dropbox/courses/polytechnique/2025_eco1s002/tutorial3"

library(dplyr)
library(ggplot2)
library(readxl)
  1. Open the dataset with the function read_xlsx from the package readxl
dat = read_xlsx(paste0(path,"/data/MRW_QJE1992.xlsx"))
  1. Describe the dataset
summary(dat)
     number         country                n                i         
 Min.   :  0.00   Length:128         Min.   :0.0000   Min.   :0.0000  
 1st Qu.: 25.75   Class :character   1st Qu.:1.0000   1st Qu.:0.0000  
 Median : 57.50   Mode  :character   Median :1.0000   Median :1.0000  
 Mean   : 57.66                      Mean   :0.8099   Mean   :0.6198  
 3rd Qu.: 89.25                      3rd Qu.:1.0000   3rd Qu.:1.0000  
 Max.   :121.00                      Max.   :1.0000   Max.   :1.0000  
                                     NA's   :7        NA's   :7       
       o             rgdpw60           rgdpw85        gdpgrowth     
 Min.   :0.0000   Min.   :  383.0   Min.   :  412   Min.   :-0.900  
 1st Qu.:0.0000   1st Qu.:  973.2   1st Qu.: 1209   1st Qu.: 2.800  
 Median :0.0000   Median : 1962.0   Median : 3484   Median : 3.900  
 Mean   :0.1818   Mean   : 3681.8   Mean   : 5683   Mean   : 4.094  
 3rd Qu.:0.0000   3rd Qu.: 4274.5   3rd Qu.: 7719   3rd Qu.: 5.300  
 Max.   :1.0000   Max.   :77881.0   Max.   :25635   Max.   : 9.200  
 NA's   :7        NA's   :12        NA's   :20      NA's   :11      
   popgrowth          i_y            school       countrycode       
 Min.   :0.300   Min.   : 4.10   Min.   : 0.400   Length:128        
 1st Qu.:1.700   1st Qu.:12.00   1st Qu.: 2.400   Class :character  
 Median :2.400   Median :17.70   Median : 4.950   Mode  :character  
 Mean   :2.279   Mean   :18.16   Mean   : 5.526                     
 3rd Qu.:2.900   3rd Qu.:24.10   3rd Qu.: 8.175                     
 Max.   :6.800   Max.   :36.90   Max.   :12.100                     
 NA's   :21      NA's   :7       NA's   :10                         
head(dat)
# A tibble: 6 × 12
  number country         n     i     o rgdpw60 rgdpw85 gdpgrowth popgrowth   i_y
   <dbl> <chr>       <dbl> <dbl> <dbl>   <dbl>   <dbl>     <dbl>     <dbl> <dbl>
1      1 Algeria         1     1     0    2485    4371       4.8       2.6  24.1
2      2 Angola          1     0     0    1588    1171       0.8       2.1   5.8
3      3 Benin           1     0     0    1116    1071       2.2       2.4  10.8
4      4 Botswana        1     1     0     959    3671       8.6       3.2  28.3
5      5 Burkina Fa…     1     0     0     529     857       2.9       0.9  12.7
6      6 Burundi         1     0     0     755     663       1.2       1.7   5.1
# ℹ 2 more variables: school <dbl>, countrycode <chr>
  1. Using ggplot2 package, make a graph to plot on the \(x\) axis the GDP growth and on the \(y\) axis the log GDP in 1965. Export in pdf.
ggplot(dat, aes(x = gdpgrowth, y = log(rgdpw60))) +
  geom_point() +
  theme_bw() +
  xlab("GDP growth rate") + ylab("GDP per capita in 1960 (log)")
Warning: Removed 12 rows containing missing values or values outside the scale range
(`geom_point()`).

ggsave(paste0(path,"/output/graph_solow.pdf"))
Saving 7 x 5 in image
Warning: Removed 12 rows containing missing values or values outside the scale range
(`geom_point()`).
  1. In the paper, different country groups are defined. Create the grouping variable, depending on country types. Hint: use ifelse(test,value if true, value if false). Notice that countries \(o\) are a subset of countries \(i\) which are a subset of countries \(n\).
dat = dat %>%
  mutate(group = ifelse(n == 1, "n", NA)) %>%
  mutate(group = ifelse(i == 1, "i", group)) %>%
  mutate(group = ifelse(o == 1, "o", group)) %>%
  filter(!is.na(group)) # Some countries are not part of a group, we remove them
  1. Estimate this model and store in an object called reg0 \[ \log (Y_i/L_i) = \beta_0 + \beta_1 \log s_i + \beta_2 \log(n + g + \delta) + \epsilon_i \]

We define \(g + \delta = 0.05\).

# Generate the variables for the regression ------------------------------------

dat = dat %>%
  mutate(constant = 0.05)

# Unconditional and conditional regressions ------------------------------------

reg0 = lm(log(rgdpw85) ~ 1 + log(i_y) + log(popgrowth + constant), data = dat)
summary(reg0)

Call:
lm(formula = log(rgdpw85) ~ 1 + log(i_y) + log(popgrowth + constant), 
    data = dat)

Residuals:
     Min       1Q   Median       3Q      Max 
-1.74635 -0.42958  0.04203  0.44671  1.50149 

Coefficients:
                          Estimate Std. Error t value Pr(>|t|)    
(Intercept)                 4.5890     0.4322  10.618  < 2e-16 ***
log(i_y)                    1.3881     0.1416   9.804 4.33e-16 ***
log(popgrowth + constant)  -0.5301     0.1298  -4.085 9.19e-05 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.6759 on 95 degrees of freedom
Multiple R-squared:  0.6159,    Adjusted R-squared:  0.6078 
F-statistic: 76.17 on 2 and 95 DF,  p-value: < 2.2e-16
  1. Estimate the same model but for each country subgroup.
reg0_i = lm(log(rgdpw85) ~ 1 + log(i_y) + log(popgrowth + constant), data = dat %>% filter(group == "i"))
reg0_n = lm(log(rgdpw85) ~ 1 + log(i_y) + log(popgrowth + constant), data = dat %>% filter(group == "n"))
reg0_o = lm(log(rgdpw85) ~ 1 + log(i_y) + log(popgrowth + constant), data = dat %>% filter(group == "o"))
  1. Bonus: do the latter with a loop
for(x in c("i","o","n")){
  reg = lm(log(rgdpw85) ~ 1 + log(i_y) + log(popgrowth + constant), data = dat %>%
             filter(group == x))
  assign(paste0("reg0_",x),reg)
}
  1. This is the result we find. Interpret it (notice the log-log specification)
summary(reg0)

Call:
lm(formula = log(rgdpw85) ~ 1 + log(i_y) + log(popgrowth + constant), 
    data = dat)

Residuals:
     Min       1Q   Median       3Q      Max 
-1.74635 -0.42958  0.04203  0.44671  1.50149 

Coefficients:
                          Estimate Std. Error t value Pr(>|t|)    
(Intercept)                 4.5890     0.4322  10.618  < 2e-16 ***
log(i_y)                    1.3881     0.1416   9.804 4.33e-16 ***
log(popgrowth + constant)  -0.5301     0.1298  -4.085 9.19e-05 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.6759 on 95 degrees of freedom
Multiple R-squared:  0.6159,    Adjusted R-squared:  0.6078 
F-statistic: 76.17 on 2 and 95 DF,  p-value: < 2.2e-16

The R2 is around 62%, it means that the model we specified explains 62% of the total variance of the log GDP in 1985 in our sample. It also highlights that 38% of the variance is left unexplained by the model.

Thanks to the log-log specification, the coefficients we found on investment and on the constant terms \((n+g+\delta)\) can directly be interpreted as elasticities (if \(x\) increases by 1%, \(y\) increases by \(\widehat\beta\)%). Here, one percent increase in investment increases GDP per capita in 1985 by 1.4%.

Notice that the coefficients we found are stastistically significant at a very high level. The p-value is way below the standard treshold of 1%.

  1. Previous work estimated that the elasticity of production with respect to investment is 1/3. Is this verified here?

The \(\beta\) we estimate is in the Solow model the \(\alpha/(1-\alpha)\). Hence, if \(\beta = 1.4\), then \(\alpha \sim 0.6\), which is almost two times the value of previous estimation.

Adding school as omitted variable

In the extension of the Solow model, we saw that human capital has a role in explaining GDP per capita.

  1. Run the model again but adding the school variable. Interpret.
# Add the school variable ------------------------------------------------------

reg1 = lm(log(rgdpw85) ~ 1 + log(i_y) + log(popgrowth + constant) + log(school), data = dat)
summary(reg1)

Call:
lm(formula = log(rgdpw85) ~ 1 + log(i_y) + log(popgrowth + constant) + 
    log(school), data = dat)

Residuals:
     Min       1Q   Median       3Q      Max 
-1.27082 -0.33776  0.06629  0.32580  1.09789 

Coefficients:
                          Estimate Std. Error t value Pr(>|t|)    
(Intercept)                5.59342    0.33733  16.581  < 2e-16 ***
log(i_y)                   0.68265    0.13045   5.233 1.01e-06 ***
log(popgrowth + constant) -0.45041    0.09599  -4.692 9.16e-06 ***
log(school)                0.64347    0.07146   9.004 2.41e-14 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.4979 on 94 degrees of freedom
Multiple R-squared:  0.7938,    Adjusted R-squared:  0.7872 
F-statistic: 120.6 on 3 and 94 DF,  p-value: < 2.2e-16
for(x in c("i","o","n")){
  reg = lm(log(rgdpw85) ~ 1 + log(i_y) + log(popgrowth + constant) + log(school), data = dat %>%
             filter(group == x))
  assign(paste0("reg1_",x),reg)
}

All coefficients remain significant. The R2 increases. Addind school increases the overall explanatory power of the model (note however that the R2 increases mechanically with the number of variables). It suggests that the coefficient was a missing a value. The coefficient on school is positive and significant. Increases education increases GDP.

  1. Bonus: Using linearHypothesis test if \(\beta_1\) and \(\beta_2\) are equal.
hypothesis.matrix = matrix(c(0, 1, 1) , nrow=1 , ncol =3)
print(car::linearHypothesis(reg0, hypothesis.matrix, rhs=0))

Linear hypothesis test:


Model 1: restricted model
Model 2: log(rgdpw85) ~ 1 + log(i_y) + log(popgrowth + constant)

  Res.Df    RSS Df Sum of Sq      F    Pr(>F)    
1     96 50.372                                  
2     95 43.405  1    6.9661 15.246 0.0001765 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The test p-value is lower than the usual threshold of 1%, we can confidently reject the hypothesis that the two coefficients are equal.

Exercise 2: Acemoglu, Johnson, Robinson and instrumental variable

Recap

In this very influential paper, AJR estimates the effects of institution on GDP growth. They in particular test whether good institutions, hat protect entrepreneurs, enhance the GDP per capita growth in the African context.

However, there is a clear endogeneity issue. Can you see it? Richer countries can afford having better institution because they can invest in better schools/universities or better voters are more in favor of better institutions to protect their wealth

Part 1

#-------------------------------------------------------------------------------
#
#   Solution for tutorial 4
#
#-------------------------------------------------------------------------------

rm(list=ls())

library(dplyr)
library(ggplot2)
library(ivreg)
library(haven)
library(stargazer)

Please cite as: 
 Hlavac, Marek (2022). stargazer: Well-Formatted Regression and Summary Statistics Tables.
 R package version 5.2.3. https://CRAN.R-project.org/package=stargazer 
path = "C:/users/mateomoglia/dropbox/courses/polytechnique/2025_eco1s002/tutorial4"

dat = read_dta(paste0(path,"/data/ajrcomment.dta"))
  1. Download the dataset ajrcomment.dta and describe the data
summary(dat)
   longname           shortnam              step            mort        
 Length:64          Length:64          Min.   :1.000   Min.   :   8.55  
 Class :character   Class :character   1st Qu.:1.000   1st Qu.:  68.90  
 Mode  :character   Mode  :character   Median :3.000   Median :  78.15  
                                       Mean   :2.562   Mean   : 245.91  
                                       3rd Qu.:4.000   3rd Qu.: 240.00  
                                       Max.   :4.000   Max.   :2940.00  
                                                                        
    logmort0          risk            loggdp          campaign     
 Min.   :2.146   Min.   : 3.500   Min.   : 6.110   Min.   :0.0000  
 1st Qu.:4.233   1st Qu.: 5.617   1st Qu.: 7.303   1st Qu.:0.0000  
 Median :4.359   Median : 6.475   Median : 7.940   Median :1.0000  
 Mean   :4.647   Mean   : 6.516   Mean   : 8.051   Mean   :0.6562  
 3rd Qu.:5.481   3rd Qu.: 7.353   3rd Qu.: 8.852   3rd Qu.:1.0000  
 Max.   :7.986   Max.   :10.000   Max.   :10.220   Max.   :1.0000  
                                                                   
     slave           source0          latitude         neoeuro      
 Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
 1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0889   1st Qu.:0.0000  
 Median :0.0000   Median :0.0000   Median :0.1528   Median :0.0000  
 Mean   :0.0625   Mean   :0.4375   Mean   :0.1811   Mean   :0.0625  
 3rd Qu.:0.0000   3rd Qu.:1.0000   3rd Qu.:0.2584   3rd Qu.:0.0000  
 Max.   :1.0000   Max.   :1.0000   Max.   :0.6667   Max.   :1.0000  
                                                                    
      asia            africa           other            edes1975     
 Min.   :0.0000   Min.   :0.0000   Min.   :0.00000   Min.   :  0.00  
 1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.00000   1st Qu.:  0.00  
 Median :0.0000   Median :0.0000   Median :0.00000   Median :  0.00  
 Mean   :0.1406   Mean   :0.4219   Mean   :0.04688   Mean   : 18.07  
 3rd Qu.:0.0000   3rd Qu.:1.0000   3rd Qu.:0.00000   3rd Qu.: 21.25  
 Max.   :1.0000   Max.   :1.0000   Max.   :1.00000   Max.   :100.00  
                                                                     
    malaria           other2            cons90         lado1995    
 Min.   :0.0000   Min.   :0.00000   Min.   :1.000   Min.   :1.000  
 1st Qu.:0.0000   1st Qu.:0.00000   1st Qu.:2.000   1st Qu.:3.000  
 Median :0.1757   Median :0.00000   Median :3.000   Median :4.000  
 Mean   :0.4099   Mean   :0.07812   Mean   :3.967   Mean   :3.714  
 3rd Qu.:1.0000   3rd Qu.:0.00000   3rd Qu.:7.000   3rd Qu.:4.000  
 Max.   :1.0000   Max.   :1.00000   Max.   :7.000   Max.   :6.000  
 NA's   :2                          NA's   :4       NA's   :1      
    ajr_rnd2     
 Min.   :0.0000  
 1st Qu.:0.0000  
 Median :0.0000  
 Mean   :0.4688  
 3rd Qu.:1.0000  
 Max.   :1.0000  
                 
head(dat)
# A tibble: 6 × 21
  longname    shortnam  step   mort logmort0  risk loggdp campaign slave source0
  <chr>       <chr>    <dbl>  <dbl>    <dbl> <dbl>  <dbl>    <dbl> <dbl>   <dbl>
1 Angola      AGO          3 280        5.63  5.36   7.77        1     0       0
2 Argentina   ARG          4  68.9      4.23  6.39   9.13        1     0       0
3 Australia   AUS          4   8.55     2.15  9.32   9.90        0     0       0
4 Burkina Fa… BFA          2 280        5.63  4.45   6.85        1     0       0
5 Bangladesh  BGD          1  71.4      4.27  5.14   6.88        1     0       1
6 Bahamas     BHS          4  85        4.44  7.5    9.29        0     0       0
# ℹ 11 more variables: latitude <dbl>, neoeuro <dbl>, asia <dbl>, africa <dbl>,
#   other <dbl>, edes1975 <dbl>, malaria <dbl>, other2 <dbl>, cons90 <dbl>,
#   lado1995 <dbl>, ajr_rnd2 <dbl>
  1. Create a scatter plot of mortality rate against GDP per capita in 1995, and a second scatter plot with the log mortality rate and log GDP per capita in 1995. Notice the difference.
# Scatter plot -----------------------------------------------------------------

ggplot(data = dat, aes(x = mort, y = loggdp)) +
  geom_point(color = "indianred") +
  theme_bw()

ggplot(data = dat, aes(x = logmort0, y = loggdp)) +
  geom_point(color = "indianred") +
  theme_bw()

Table 2 of Acemoglu et al. (2001) presents the results of an OLS regression of log GDP per capita in 1995 on average protection against expropriation, and a some covariates:

\[ \log y_i = \mu + \alpha R_i + \mathbf{X}_i'\gamma + \epsilon_i \]

  1. Identify the covariates in the results table.

The covariates are latitude, a variable that takes one if the country is in Asia (also called a dummy variable), a dummy if the country is in Africa, an “other continent” dummy.

  1. Reproduce the results for the columns (2), (5), and (6). Export them to your answer sheet. Interpret the results clearly.
reg0_nocov  = lm(loggdp ~ risk, data = dat)
reg0_lat    = lm(loggdp ~ risk + latitude, data = dat)
reg0_allcov = lm(loggdp ~ risk + latitude + asia + africa + other, data = dat)

stargazer(reg0_nocov,reg0_lat, reg0_allcov,type = "text", out = paste0(path,"/output/reg0.tex"), keep.stat = c("n", "rsq"))

==========================================
                  Dependent variable:     
             -----------------------------
                        loggdp            
                (1)       (2)       (3)   
------------------------------------------
risk         0.516***  0.457***  0.396*** 
              (0.063)   (0.065)   (0.060) 
                                          
latitude                1.710**    0.978  
                        (0.722)   (0.641) 
                                          
asia                             -0.651***
                                  (0.236) 
                                          
africa                           -0.879***
                                  (0.173) 
                                          
other                              0.103  
                                  (0.390) 
                                          
Constant     4.687***  4.761***  5.754*** 
              (0.417)   (0.404)   (0.406) 
                                          
------------------------------------------
Observations    64        64        64    
R2             0.524     0.564     0.705  
==========================================
Note:          *p<0.1; **p<0.05; ***p<0.01
  1. What is the effect of an increase of 1 on the risk scale on the GDP?

1 unit increase in risk increases by 39 percent the country GDP. The result is significant at the 1% level. Notice that the effect of risk on GDP is robust to the add of other variables. It suggests a strong relationship between both.

Part 2

So far, we used OLS to estimate the effect of risk on GDP. However, the relationship is likely to be endogenous. Hence, we can risk with mortality to aleviate this endogeneity concern. We run two different methods:

  1. Run the regression of risk on log mortality (using only latitude as a covariate).
fs = lm(risk ~ logmort0 + latitude, data = dat)
summary(fs)

Call:
lm(formula = risk ~ logmort0 + latitude, data = dat)

Residuals:
    Min      1Q  Median      3Q     Max 
-2.7321 -0.9389  0.0495  0.8417  3.1898 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   8.5558     0.8083  10.585 1.94e-15 ***
logmort0     -0.5172     0.1409  -3.672 0.000509 ***
latitude      2.0075     1.3299   1.510 0.136331    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.249 on 61 degrees of freedom
Multiple R-squared:  0.2997,    Adjusted R-squared:  0.2767 
F-statistic: 13.05 on 2 and 61 DF,  p-value: 1.913e-05
  1. Run the regression of predicted risk on GDP (using only latitude as a covariate). To do so, you need to estimate the predicted risk based on the previous regression result using the predict function.
risk_hat = predict(fs)

dat$risk_hat = risk_hat

ggplot(dat,aes(x=risk_hat,risk)) +
    geom_point() +
    theme_bw()

summary(lm(loggdp ~ risk_hat + latitude,data=dat))

Call:
lm(formula = loggdp ~ risk_hat + latitude, data = dat)

Residuals:
     Min       1Q   Median       3Q      Max 
-2.49222 -0.46453  0.08935  0.47819  1.59812 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   1.8578     0.9638   1.928   0.0586 .  
risk_hat      0.9620     0.1652   5.824  2.3e-07 ***
latitude     -0.4169     1.0011  -0.416   0.6786    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.7576 on 61 degrees of freedom
Multiple R-squared:  0.4937,    Adjusted R-squared:  0.4771 
F-statistic: 29.74 on 2 and 61 DF,  p-value: 9.65e-10

predict computes \(\widehat x_i = \widehat\beta_0 \widehat \beta_1 z_i + \widehat u_i\). Here, \(\widehat x\) is the predicted risk. Then, I add the object risk_hat as a new column in the dat dataset.

A good instrument has to check two assumptions. The first one is the relevance, meaning that the instrument must be correlated with the instrumented variable. The second one is exogeneity, meaning that \(z\) must not cause \(y\). This cannot be directly tested for.

  1. Does the instrument seem valid? Comment the results.

Instrument is relevant as the coefficient in fs is positive and significant. Instrument seems to be exogenous. Lagged mortality (over a century ago) seems not to have an effect on contemporeneous outcome through another way than through institutional context. Check David Albouy critique for a critical assessment of the AJR strategy.

  1. Discover the function ivreg and do the IV regression again. Do the results differ?
summary(ivreg(loggdp ~ risk + latitude | logmort0 + latitude, data = dat))

Call:
ivreg(formula = loggdp ~ risk + latitude | logmort0 + latitude, 
    data = dat)

Residuals:
     Min       1Q   Median       3Q      Max 
-2.48221 -0.61459  0.09125  0.73670  1.79187 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   1.8578     1.2592   1.475    0.145    
risk          0.9620     0.2158   4.458 3.61e-05 ***
latitude     -0.4169     1.3079  -0.319    0.751    

Diagnostic tests:
                 df1 df2 statistic  p-value    
Weak instruments   1  61     13.48 0.000509 ***
Wu-Hausman         1  60     16.61 0.000137 ***
Sargan             0  NA        NA       NA    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9898 on 61 degrees of freedom
Multiple R-Squared: 0.1358, Adjusted R-squared: 0.1075 
Wald test: 17.42 on 2 and 61 DF,  p-value: 1.033e-06 

Results are the same, which is expected!

Solution are here.